ﬁ GSoC Proposal for BeagleBoard.org

BeagleBoard.org
Jul 15, 2025

Table of contents

1 Introduction
1.1 Summary links L e e e e e e e e
1.2 Status e e e e e e e e e e e e e e
1.3 ADOUL . . e e e e e e e

2 Project
2.1 Description e e e e e e e e e
2.2 Software e e e e e e e e e
2.3 Hardware e e e e e e e e e e

3 Timeline
3.1 Timeline summary o e e e e e e e e e e e e e
3.2 Timelinedetailed L e e e e
3.2.1 Community Bonding Period (May 1st-May 26th)
3.2.2 Coding begins (May 27th) o e e e e e e e e e e
3.2.3 Milestone #1, Introductory YouTube video (June 3rd)
3.2.4 Milestone #2 (June 10th) e e e e
3.2.5 Milestone #3 (June 17th) L e e e e e
3.2.6 Milestone #4 (June 24th) L e e e e e e e
3.2.7 Milestone #5 (July 1st) L e e e e e e e e e
3.2.8 Submit midterm evaluations (July 8th) o
3.2.9 Milestone #6 (July 15th) L L e e e e e
3.2.10 Milestone #7 (July 22nd) L L e e e e e e
3.2.11 Milestone #8 (July 29th)« . . e e e e e e e
3.2.12 Milestone #9 (Aug 5th) e e e e e e e
3.2.13 Milestone #10 (Aug 12th) e e e e e e
3.2.14 Final YouTube video (Aug 19th)
3.2.15 Final Submission (Aug 24nd) L L e e e e e
3.2.16 Initial results (September 3) L e e e e e e e e

4 Experience and approach
4.1 ContingeNCY . .« v v v v e
4.2 Benefit L e e e e
4.3 MiSC . . L o e e e e e e e e e e e
4.4 References e e e e e e e e

R]

(o) o) I) o) o) NG, BN G, R ©, RO, BN G, B, B 6, BN 6, R NU SN SN SN A w w NN

0 0 00 N N

Chapter 1

Introduction

1.1 Summary links

* Contributor: lan Clester

¢ Mentors: Jack Armitage, Chris Kiefer
¢ GSoC: Google Summer of Code

* Weekly Updates: Forum Thread

* Repository: embedded-difflogic

1.2 Status

This project has been accepted for GSoC 2024.

1.3 About

e Forum: u/ijc (lan Clester)

* OpenBeagle: iy openbeagle.org/ijc

+ Discord:) bbb.io/gsocchat

« Github: () ijc8 (lan Clester)

* School: Georgia Institute of Technology

+ Country: [United States

* Primary language: @ English

* Typical work hours: 9AM-6PM US Eastern

« Previous GSoC participation: G Better Faust on the Web (2023)

https://forum.beagleboard.org/u/ijc
https://forum.beagleboard.org/u/jarm
https://forum.beagleboard.org/u/luuma
https://summerofcode.withgoogle.com/archive/2023/projects/iTfGBkDk
https://forum.beagleboard.org/t/weekly-progress-report-differentiable-logic-for-interactive-systems-and-generative-music/38486
https://openbeagle.org/ijc/embedded-difflogic
https://forum.beagleboard.org/u/ijc
https://openbeagle.org/ijc
https://bbb.io/gsocchat
https://github.com/ijc8
https://summerofcode.withgoogle.com/archive/2023/projects/L6oI4LhW

Chapter 2

Project

Project name: Differentiable Logic for Interactive Systems and Generative Music

2.1 Description

The general aim of this project is to enable the development of models that are suitably efficient for use in real-time
interactive applications on embedded systems (particularly the BeagleBone-based Bela). At the project’s core is
difflogic’, a recent technique that employs sparsely-connected network composed of basic logic gates (rather than
densley-connected neurons with complex activation functions) to obtain small models and fast inference. Thus, the
first and foremost goal of the project is to enable a convenient workflow for developing difflogic models and running
them on the Bela. The expected use case is developing and training models on a larger machine (e.g. a laptop,
desktop, or server), followed by exporting the model to C and cross-compiling it for the BeagleBone - either the
main CPU (ARM Cortex-A8) or the PRUs. To support this workflow, | will develop wrappers for exporting compiled
difflogic models for use in the various languages supported on Bela (C++, Pure Data, SuperCollider, Csound). These
wrappers will likely take inspiration from other projects that bring machine learning into computer music environ-
ments, such as nn~ and FluCoMa. This first goal, along with profiling and benchmarking the performance of difflogic
models on both the main CPU and the PRUs, constitutes roughly the first half of the project.

The other, more exploratory half of the project consists of building out integrations and applications of difflogic
for the rapid development of useful audio models. To that end, | intend to explore the possibilities of combining
difflogic networks with techniques such as DDSP (differentiable digital signal processing)?, possibly also leverag-
ing Faust auto-differentation. | also intend to investigate the feasibility of “porting” well-known ML architectures
such as VAEs to difflogic networks, and of training difflogic networks to approximate the behavior of existing neural
networks (i.e. knowledge distillation). Audio models such as RAVE®, PESTO*, and Whisper® may be of particular
interest. Furthermore, | will explore opportunities to combine difflogic networks with other cheap, effective tech-
niques like the $Q recognizer® for gestural control, linear predictive coding for audio analysis & resynthesis, and
toolkits such as RapidLib. Such combinations may be particularly useful for interactive machine learning (as in
Wekinator’), should fine-tuning difflogic models on-device prove too costly. In this phase of the project, | will de-
velop example applications involving sound analysis, classification, and synthesis, and experiment with interactive
machine learning.

! petersen, F. et al. 2022. Deep Differentiable Logic Gate Networks. Proceedings of the 36th Conference on Neural Information Processing
Systems (Oct. 2022).

2 Engel, J. et al. 2020. DDSP: Differentiable Digital Signal Processing. Proceedings of the International Conference on Learning Representations
(2020).

3 Caillon, A. and Esling, P. 2021. RAVE: A variational autoencoder for fast and high-quality neural audio synthesis. arXiv.

4 Riou, A. et al. 2023. PESTO: Pitch Estimation with Self-supervised Transposition-equivariant Objective. Proceedings of the 24th International
Society for Music Information Retrieval Conference (Sep. 2023).

5 Radford, A. et al. 2023. Robust Speech Recognition via Large-Scale Weak Supervision. Proceedings of the 40th International Conference on
Machine Learning (2023).

6 vatavu, R.-D. et al. 2018. $Q: a super-quick, articulation-invariant stroke-gesture recognizer for low-resource devices. Proceedings of the
20th International Conference on Human-Computer Interaction with Mobile Devices and Services (New York, NY, USA, Sep. 2018), 1-12.

7 Fiebrink, R. et al. 2009. A Meta-Instrument for Interactive, On-the-fly Machine Learning. Proceedings of the International Conference on New
Interfaces for Musical Expression (2009), 280-285.

https://github.com/acids-ircam/nn_tilde
https://www.flucoma.org/
https://github.com/jarmitage/RapidLibBela

GSoC Proposal for BeagleBoard.org

Finally, | intend to dedicate some time to a specific creative application: generating networks of logic gates to
approximate particular sounds and exploring the space of such sound-generating networks. This application is in-
spired by bytebeat®, a practice which involves writing short expressions that describe audio as a function of time,
generating music sample-by-sample. Typically, these expressions involve many bit-twiddling operations, consisting
primarily of logic gates (bitwise AND, OR, XOR, NOT) and shifts — a fact that suggests a remarkably good fit for
difflogic, wherein models consist of networks of gates. Other inspirations include work on sound matching: repro-
ducing a given sound or family of sounds by estimating synthesizer parameters®, generating patches'?, or training
models'’. In this vein, | will attempt to train difflogic gates to reproduce particular sounds, treating the entire
network as a bytebeat-style function of time (sample index) that outputs samples. Thanks to the tricks difflogic
employs to train a network of discrete gates, this approach will enable sound matching via gradient descent and
backpropagation (as in e.g. DDSP) rather than evolutionary methods, while still ultimately generating a discrete
function. Lastly, | will build an interactive application to explore the space of sound-generating networks (e.g. by
mutating a network, or morphing between two networks) and visualize the execution of logic gate networks.

2.2 Software

« C

o C++

e Python
- PyTorch
- difflogic
- dasp

* Faust

¢ Linux

2.3 Hardware

* Bela
- BeagleBone Black
- Bela Cape

* Microphone

* Speaker

e OLED screen

8 Heikkila, V.-M. 2011. Discovering novel computer music techniques by exploring the space of short computer programs. arXiv.
9 Yee-King, M. and Roth, M. 2008. Synthbot: An unsupervised software synthesizer programmer. ICMC (2008).

10 Macret, M. and Pasquier, P. 2014. Automatic design of sound synthesizers as pure data patches using coevolutionary mixed-typed cartesian
genetic programming. Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (New York, NY, USA, Jul. 2014),
309-316.

11 Caspe, F. et al. 2022. DDX7: Differentiable FM Synthesis of Musical Instrument Sounds. Proceedings of the 23rd International Society for
Music Information Retrieval Conference. (2022).

2.2. Software 3

Chapter 3

Timeline

Note: This timeline is based on the official GSoC timeline

3.1 Timeline summary

Date Activity

February 26 Connect with possible mentors and request review on first draft

March 4 Complete prerequisites, verify value to community and request review on second draft
March 11 Finalized timeline and request review on final draft

March 21 Submit application

May 1 Start bonding

May 27 Start coding and introductory video

June 3 Release introductory video and complete milestone #1

June 10 Complete milestone #2

June 17 Complete milestone #3

June 24 Complete milestone #4

July 1 Complete milestone #5

July 8 Submit midterm evaluations

July 15 Complete milestone #6

July 22 Complete milestone #7

July 29 Complete milestone #8

August 5 Complete milestone #9

August 12 Complete milestone #10

August 19 Submit final project video, submit final work to GSoC site and complete final mentor evaluation

3.2 Timeline detailed

3.2.1 Community Bonding Period (May 1st - May 26th)

GSoC contributors get to know mentors, read documentation, get up to speed to begin working on their projects

3.2.2 Coding begins (May 27th)

3.2.3 Milestone #1, Introductory YouTube video (June 3rd)

* Setup development environment

» Train trivial difflogic network on laptop & run generated C on Bela (main CPU)

https://developers.google.com/open-source/gsoc/timeline

GSoC Proposal for BeagleBoard.org

3.2.4 Milestone #2 (June 10th)

* Run difflogic network on PRU

¢ Perform feature extraction (FFT, MFCCs) on PRU

3.2.5 Milestone #3 (June 17th)

¢ Build wrappers to simplify use of difflogic networks in Bela projects
- C++ (namespace & wrapper around difflogic-generated C)

- SuperCollider (UGen)

3.2.6 Milestone #4 (June 24th)

* Build wrappers to simplify use of difflogic networks in Bela projects
- Pure Data (external)

- Csound (UDO)

3.2.7 Milestone #5 (July 1st)

* Explore feasibility of combining difflogic with DDSP techniques (via dasp and possibly Faust auto-
differentiation)

» Use difflogic network to control synthesizer parameters

3.2.8 Submit midterm evaluations (July 8th)

Important: July 12 - 18:00 UTC: Midterm evaluation deadline (standard coding period)

3.2.9 Milestone #6 (July 15th)

* Investigate feasibility of interactive machine learning (e.g. fine-tuning) with difflogic networks

* Combine difflogic network with complementary cheaply techniques (e.g. LPC, template matching via $Q,
RapidLib)

3.2.10 Milestone #7 (July 22nd)

* Work on example applications
- Classify short mouth sounds for interactive system control (a la parrot.py)

- Perform real-time pitch estimation (a la PESTO)

3.2.11 Milestone #8 (July 29th)

* Experiment with implementing popular architectures (e.g. VAEs, as in RAVE) as difflogic networks

* Experiment with difflogic knowledge distillation: training a difflogic network to approximate the behavior of
a pre-trained, conventional neural network (student/teacher)

3.2. Timeline detailed 5

https://github.com/chaosparrot/parrot.py

GSoC Proposal for BeagleBoard.org

3.2.12 Milestone #9 (Aug 5th)
* Experiment with training difflogic networks for sound reconstruction
- Bytebeat-inspired: feed increasing timestamps to network, get subsequent audio samples out
3.2.13 Milestone #10 (Aug 12th)

¢ Creative application: Interactive exploration of space of difflogic sound reconstruction models
- “Glitch” - random perturbations of network (mutate gates & connections)
- “Morph” - interpolate (in terms of tree edit-distance) between different sound-generating networks

- Visualize difflogic networks & their execution

3.2.14 Final YouTube video (Aug 19th)

Submit final project video, submit final work to GSoC site and complete final mentor evaluation

3.2.15 Final Submission (Aug 24nd)

Important: August 19 - 26 - 18:00 UTC: Final week: GSoC contributors submit their final work product and
their final mentor evaluation (standard coding period)

August 26 - September 2 - 18:00 UTC: Mentors submit final GSoC contributor evaluations (standard coding
period)

3.2.16 Initial results (September 3)

Important: September 3 - November 4: GSoC contributors with extended timelines continue coding
November 4 - 18:00 UTC: Final date for all GSoC contributors to submit their final work product and final evaluation

November 11 - 18:00 UTC: Final date for mentors to submit evaluations for GSoC contributor projects with ex-
tended deadline

6 Chapter 3. Timeline

Chapter 4

Experience and approach

| have extensive experience with embedded systems and real-time audio. As an undergraduate, | worked on em-
bedded systems during internships at Astranis and Google. For a final class project, | developed a multi-effects
pedal with a configurable signal chain in C using fixed-point arithmetic on the Cypress PSoC 5 (an ARM-based
system-on-a-chip with configurable digital and analog blocks). My master’s work involved localizing RFID tags using
software-defined radios with framerates sufficient for interactive systems. Currently, | am a teaching assistant for
a class on Audio Software Engineering (in Rust, with a focus on real-time audio software), in which | have been
responsible for preparing much of the material and lectures. | have worked with a variety of microcontrollers and
single-board computers, from writing assembly on the Intel 8051, to C++ on Arduinos and ESP32s, to Python and
JS on Raspberry Pis.

| have also employed machine learning techniques to build interactive systems. In a graduate course on multimodal
user interaction, | gained experience with classic machine learning techniques, and employed cheap techniques for
gesture recognition in a tablet-based musical sketchpad. In the meantime, | have been following developments in
machine learning for audio (particularly those that are feasible to run locally, especially sans GPU), and | have ex-
perimented with models such as RAVE and Whisper (using the latter for an recent interactive audiovisual hackathon
project).

Much of my graduate work has focused on generative music and computational representations of music. My recent
work on ScoreCard has put an extreme emphasis on fitting music-generating programs (typically written in C) into
efficient, self-contained packages that are small enough to store in a QR code (< 3kB). Previous projects such as
Blocks (an audiovisual installation) and kilobeat (a collaborative livecoding tool) have probed the musical potential
of extremely short fragments of code (bytebeat & floatbeat expressions). These projects also explore methods of
visualizing musical programs, either in terms of their output or their execution. More information about my work is
available on my website and GitHub.

| am particularly interested in difflogic because it occupies an intersection between lightweight machine learning
techniques (cheaper is better!) and compact representations of musical models (less is more!), and | am strongly
motivated to see what it can do.

4.1 Contingency

If I get stuck on something related to BeagleBoard or Bela development, | plan to take advantage of resources within
those communities (such as documentation, forums, and Discord servers).

If | get stuck on something related to ML or DSP, | plan to refer back to reference texts and the papers and code of
related work (DDSP, RAVE, PESTO, etc.), and | may reach out to colleagues within the ML space (such as those in
the Music Information Retrieval lab within my department) for advice.

If | get stuck on something related to music or design, | plan to take a break and go on a walk. :-)

https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-5-lp-arm-cortex-m3/
https://dspace.mit.edu/handle/1721.1/129201
https://github.com/ijc8/notepad
https://github.com/ijc8/hackathon-2024
https://github.com/ijc8/hackathon-2024
https://ijc8.me/s
https://ijc8.me/blocks
https://ijc8.me/kilobeat
https://ijc8.me
https://github.com/ijc8

GSoC Proposal for BeagleBoard.org

4.2 Benefit

The first half of this project will provide a straightforward means to develop models with difflogic and run them on
embedded systems such as BeagleBoards and particularly Bela. (The wrappers for Bela’s supported languages may
also prove generally useful outside of embedded contexts.) Making it easier for practitioners to use difflogic models
in creative applications will, in turn, aid in the development of NIMEs and DMIs that can benefit from the small size
and fast inference (and corresponding portability and low latency) of difflogic networks.

The second half of this project, depending on the results of my explorations, may demonstrate useful ways to com-
bine difflogic with other ML & DSP techniques, and provide some useful and interesting audio-focused applications
to serve as effective demonstrations of the possibilities for ML on the BeagleBoard and possible starting points for
others.

4.3 Misc

Here is my pull request demonstrating cross-compilation and version control.

4.4 References

8 Chapter 4. Experience and approach

https://github.com/jadonk/gsoc-application/pull/194

	Introduction
	Summary links
	Status
	About

	Project
	Description
	Software
	Hardware

	Timeline
	Timeline summary
	Timeline detailed
	Community Bonding Period (May 1st - May 26th)
	Coding begins (May 27th)
	Milestone #1, Introductory YouTube video (June 3rd)
	Milestone #2 (June 10th)
	Milestone #3 (June 17th)
	Milestone #4 (June 24th)
	Milestone #5 (July 1st)
	Submit midterm evaluations (July 8th)
	Milestone #6 (July 15th)
	Milestone #7 (July 22nd)
	Milestone #8 (July 29th)
	Milestone #9 (Aug 5th)
	Milestone #10 (Aug 12th)
	Final YouTube video (Aug 19th)
	Final Submission (Aug 24nd)
	Initial results (September 3)

	Experience and approach
	Contingency
	Benefit
	Misc
	References

